Measurement of nonresonant third-order susceptibilities of various gases by the nonlinear interferometric technique

Jae Won Hahn and Eun Seong Lee

Division of Quantum Metrology, Korea Research Institute of Standards and Science, P.O. Box 102 Yusung, Taejon 305–600, Korea

Received May 13, 1994; revised manuscript received November 14, 1994

We applied nonlinear interferometry of coherent anti-Stokes Raman spectroscopy (CARS) to measure the nonresonant third-order susceptibilities of various gases. Using argon as an internal calibration standard, we determined the effective nonresonant susceptibilities of acetylene, carbon dioxide, methane, nitrogen, oxygen, propane, carbon monoxide, Freon, and hydrogen from the amplitudes of the interference fringes of the CARS signals generated in the two gas cells. The electronic susceptibility was calculated by subtracting the off-resonant term of each molecule from the measured effective nonresonant susceptibility, and the results of this work are compared with the published data. The overall uncertainty is estimated to be less than 5%.

1. INTRODUCTION

Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a diagnostic tool for probing temperature and species concentration of gas-phase samples. CARS is considered one of the most useful noncontact diagnostic technique for studying combustion and gas flow in a hostile environment.

The CARS signal is described by the square of the third-order nonlinear susceptibility, which includes a resonant term and a nonresonant term. For a gas mixture, indicates the resonant contribution from Raman transitions of the molecule under test and indicates the sum of the off-resonant terms of the other molecules and the electronic contributions from all atoms and molecules in the gas mixture.

When the fractional concentration of a resonant molecule is of the order of a few percent, the nonresonant CARS term becomes comparable with the resonant term and produces modulation dips in the CARS spectrum. This deformation of the CARS spectrum by the nonresonant background makes curve fitting of the spectrum complicated, and the sensitivity of the concentration measurements is limited by the background. Temperature or species concentration measurements that use CARS, especially concentration measurements, are then only accurate to the degree to which the background nonresonant susceptibility is known. Several authors have proposed that concentration measurements be referenced to the magnitude of the nonresonant background. Therefore, accurate values of the third-order nonresonant susceptibilities of various gases are important quantities in CARS thermometry.

Chang et al. first introduced the nonlinear interferometric technique to measure the relative phase between fundamental and second-harmonic light in a nonlinear optical material in 1965. Yacoby et al. applied this technique for cancellation of the nonresonant background in the CARS signal. They used a variable-length double cell that had three windows. The thickness of the two cells was adjusted by movement of the two side windows. Recently Marowsky and Lupke demonstrated a versatile experimental system for the control of the relative phase by spatially separating sample cells and placing a phase-shifting unit (PSU) between the sample cells. This system is more convenient for obtaining the interference fringes of the nonlinear signals as the pressure in the cell is constant during the entire experiment. We have adopted this technique to measure the nonresonant third-order susceptibilities of various gases.

The nonresonant susceptibilities of various gases have been measured by several nonlinear optical methods, such as wave mixing, electric-field-induced second-harmonic generation, and electro-optic Kerr effects. In 1967 Rado first measured the third-order nonresonant susceptibility of several gases by using four-wave mixing based on the reference value of the resonant susceptibility of hydrogen. With the same technique, Lundeen et al. measured the nonresonant susceptibilities of a number of gases that included various hydrocarbons and halocarbons. Their reference value was the resonant susceptibility of hydrogen. Taking into consideration population factors and line widths, they reevaluated Rado’s results. Using the Raman Q-branch resonance of deuterium as a reference, Rosasco and Hurst determined the absolute value of the nonresonant susceptibility of argon and hydrogen with phase-modulated coherent Raman spectroscopy. Finally, Farrow obtained the nonresonant susceptibility of argon, nitrogen, and several other combustion gases by fitting the nitrogen-resonant CARS spectra for binary gas mixtures with the modified energy-gap model.

In this paper we propose a new technique for measuring the nonresonant susceptibility of gas: nonlinear interferometry. Using argon as a calibration standard, we obtain accurate values of the nonresonant susceptibilities of various gases relative to argon without any theoretical assumptions, and the results are compared with several previous determinations.
2. CALCULATION OF INTERFERENCE FRINGES OF THE CARS SIGNAL

Consider the apparatus shown in Fig. 1, which consists of two gas cells placed serially. One is the reference cell, which we fill with a reference gas (argon) that is to be used as an internal calibration standard, and the other is a sample cell, which we fill with the sample gas of interest. CARS signals are generated at \(z = 0 \) and \(z = L \), and a PSU is placed between the cells to control the relative phase between the two CARS signals. The pump and Stokes beams for the CARS are collimated by a set of lenses and focused at \(z = 0 \) and \(z = L \). Denoting the amplitude of the electric fields of the pump and the Stokes beams as \(E_{10} \) and \(E_{20} \), respectively, the electric fields along the \(z \) direction in the reference cell are described by plane waves

\[
E_{1r}(t, z) = E_{10} \exp[-i \omega_1 t + ik_r(\omega_1)z],
\]

\[
E_{2r}(t, z) = E_{20} \exp[-i \omega_2 t + ik_r(\omega_2)z],
\]

where \(\omega_1 \) and \(\omega_2 \) are the frequencies of the pump and the Stokes beams, respectively, and \(k_r \) is the propagation vector in the reference gas.

Assuming that the CARS signal arises in the focal region by a short cylinder of length \(\delta (\ll 1) \), we obtain for the CARS signal generated in the reference cell

\[
E_{3r}(t, z) = ic_0 \delta \chi E_1 E_2^* E_{20} \exp[-i \omega_3 t + ik_r(\omega_3)z],
\]

where \(c_0 = 2 \pi \omega_3 / (n_3 c) \). Here \(\chi \) and \(P_r \) are the CARS susceptibility and the pressure of the gas in the reference cell, respectively, \(n_3 \) is the refractive index of the gas, and \(c \) is the speed of light in vacuum.

Assuming that the depletion of the pump and the Stokes beams is negligible, we obtain the electric fields of the beams in the sample cell; the beams are propagated from the reference cell:

\[
E_{1s}(t, z) = E_{10} \exp(-i \Delta_1) \exp[-i \omega_1 t + ik_r(\omega_1)z],
\]

\[
E_{2s}(t, z) = E_{20} \exp(-i \Delta_2) \exp[-i \omega_2 t + ik_r(\omega_2)z],
\]

\[
E_{3s}(t, z) = ic_0 \delta \chi E_1 E_2^* E_{20} \exp(-i \Delta_3)
\times \exp[-i \omega_3 t + ik_r(\omega_3)z],
\]

where \(\Delta_i \) is the phase delay of the electric fields induced by propagation from the reference cell to the sample cell and is given by

\[
\Delta_i = [k_r(\omega_i) - k_r(\omega_1)]d_r + [k_r(\omega_i) - k_r(\omega_2)]d_p + \gamma_i.
\]

\(\gamma_i \) is the phase delay induced by air between the cells, the lenses, and the windows of the cells. \(k_r \) and \(k_p \) are the propagation vectors in the sample cell and the PSU, respectively. The subscript \(i \) corresponds to 1, 2, and 3 for the pump beam, the Stokes beam, and the CARS signal, respectively.

At \(z = L \), the electric field of the CARS signal becomes

\[
E_{3s}(t, L) = ic_0 \delta \chi E_1 E_2^* E_{20} \exp(-i \omega_3 t) \exp[i(k_r(\omega_3) d_r + k_p(\omega_3) d_p + k_r(\omega_3) d_s - \gamma_3)],
\]

where \(d_r \) is the distance between the focal point in the reference cell and the right-hand window of the reference cell, as shown in Fig. 1, and \(d_p \) is the distance between the left-hand window of the sample cell and the focal point of the cell. \(d_p \) is the thickness of the PSU.

With the same assumptions that were used in deriving relation (3), we obtain the electric field of the CARS signal generated at \(z = L \) in the sample cell:

\[
E_{3s}(t, L) = ic_0 \delta \chi E_1 E_2^* E_{20} \exp(-i \omega_3 t) \exp[i(2k_r(\omega_1) d_r + 2k_p(\omega_1) d_p + 2k_r(\omega_2) d_s - 2\gamma_1) - i(k_r(\omega_2) d_r + k_p(\omega_2) d_p + k_r(\omega_2) d_s - \gamma_2)],
\]

where \(c_0' = 2 \pi \omega_3 / (n_3 c) \). \(\phi \) is a geometrical factor that represents the difference between the efficiency of the CARS signal generation in the reference cell and that in the sample cell. \(\phi \) is affected by the aberration of the lenses and by scattering and absorption of the laser beam by the optical components. \(\chi \), \(P_r \), and \(n_3 \) are the CARS susceptibility, the pressure, and the refractive index of the sample gas, respectively.

Assuming that the change of the refractive index is negligibly small, i.e., \(c_0' = c_0 \), we obtain for the intensity of the interference signal

\[
I \propto |E_{3r} + E_{3s}|^2 = (c_0 \delta \chi P_r E_1 E_2^* E_{20}^*)^2
\times [1 + \eta^2 + 2\eta \cos(\Delta k d_r + \Delta k_p d_p + \Delta k_s d_s - \Gamma)],
\]

where

\[
\eta = \frac{\chi P_r \phi}{\chi P_r},
\]

\[
\Gamma = 2\gamma_1 - \gamma_2 - \gamma_3,
\]

\[
\Delta k_j = 2k_j(\omega_1) - k_j(\omega_2) - k_j(\omega_3) \quad (j = r, s, p).
\]

The subscript \(j \) corresponds to \(r, s, \) and \(p \) for the reference gas, the sample gas, and the PSU, respectively.

From relation (10) we find that the interference signal is modulated as a function of the phase delay induced by the dispersive media (gas cells, PSU, lenses, etc.), and a fringe pattern arises. We note that if we fix the pressure of the reference cell, the amplitude of the interference fringes, \(\eta \), linearly depends on the pressure of the sample cell.

A. Change of Thickness of the PSU

If we change the thickness of the PSU, the intensity of the interference signal in relation (10) becomes
Then we find the intensity of the interference signal to be
\[I \equiv \left(c_0 \delta \chi'' P_r E_{10}^2 E_{20}^2 \right)^2 \times \left[1 + \frac{1}{2} \left(\eta^2 \right) \cos(\Delta k_{dp} d_p + \Gamma') \right], \]
where \(\Gamma' = \Delta k_{d_r} d_r + \Delta k_{d_s} d_s - \Gamma \). Figure 2 shows the calculated fringe patterns of the interference signal. For the calculation we assume \(\phi = 1 \), and the calculation of the interference fringe is performed as a function of the phase shift \(\Delta k_{dp} d_p \) in relation (11) induced by the PSU.

B. Change of Pressure of the Sample Cell

If we assume that the refractive index of the gas sample depends linearly on the gas pressure, the refractive index \(n_s \) is given by
\[n_s = 1 + \alpha P \quad (\alpha \ll 1). \]

Then we find the intensity of the interference signal to be
\[I \equiv \left(c_0 \delta \chi'' P_r E_{10}^2 E_{20}^2 \right)^2 \times \left[1 + \xi^2 P_s^2 + \frac{1}{2} \xi^2 P_s \cos(2\pi \Delta \alpha P_s d_s + \Gamma'') \right], \]
where
\[\xi = \frac{\chi'' P_s}{\chi'' P_r}, \]
\[\Delta \alpha = \frac{2\alpha(n_1 - n_2)}{\lambda_2} - \frac{\alpha(n_2 - n_3)}{\lambda_3}, \]
\[\Gamma'' = \Delta k_{d_r} d_r + \Delta k_{d_p} d_p + \Delta k_{d_s} d_s - \Gamma', \]
\[\Delta k_0 = \frac{1}{c} (2\omega_1 - \omega_2 - \omega_3). \]

Figure 3 shows the calculated interference signal as a function of the pressure of the sample cell. For the calculation \(\phi \), \(\Delta \alpha \), and \(d_s \) in relation (13) are given by 1, 1.56 \times 10^{-3} \text{ (bar cm)}^{-2} \text{ (1 bar = 749.9 Torr)}, and 8 cm, respectively. We find that it is hard to derive any physical parameter—the magnitude of the susceptibility, for example—by fitting the interference fringe in Fig. 3.

3. EXPERIMENT

The detailed description of the CARS spectrometer used in this investigation was given previously, and only a brief description will be given here. A simple schematic diagram for the nonlinear interferometry of CARS is shown in Fig. 1. A frequency-doubled Nd:YAG laser (Quantel YG660-10) produced 532-nm light of \(\sim 150\text{-mJ/pulse energy}, 7-8\text{-ns pulse duration, at a 10-Hz repetition rate. Some of the energy of the doubled Nd:YAG laser (\sim 90\%) was used to pump a pulsed dye laser (Lumonics Hyper Dye SLM), and the remaining beam was used for the two pump beams for boxcar phase matching of the CARS experiment.

We operated the Nd:YAG laser in a single longitudinal mode by injection locking with a diode-pumped cw Nd:YAG laser (Light Wave S-100), and the spectral bandwidth of the laser pulse was less than 100 MHz. The pulsed dye laser was operated in a single longitudinal mode by the grazing-incidence beam technique, and the bandwidth of the laser pulse was \(\sim 500 \text{ MHz.} \)

The stability of the single-mode operation of the pulsed dye laser in scanning the frequency was not confirmed, but, after careful alignment of the laser, we found that the stability of the single-mode operation was good enough for this investigation when we held the frequency of the pulsed dye laser at a constant value.

For the boxcars phase matching the distance between the axes of the two pump beams was 5-6 mm and the waists of the pump and the Stokes beams in the collimating lens were \(\sim 2 \text{ mm.} \) Spatial resolution, which was measured by purging dried argon through a slit-type nozzle, was 2-3 mm. The pump and the Stokes beams were collimated with a set of achromatic lenses \((f = 25 \text{ cm}) \) to maintain the symmetry of the beam configuration. The pump and the Stokes beams were horizontally polarized, and we recorded the CARS signal with the same polarization.

Using the nonresonant CARS signal arising in another gas cell (propane \(\sim 2 \text{ bars} \)) that was installed behind the sample cell, we normalized the CARS signals on a shot-by-shot basis for the laser intensity fluctuations. This reduced the peak-to-peak noise of the CARS signal by a factor of 8. We measured the CARS signal with a photomultiplier tube (PMT) (EMI 9658) after the signal passed through a monochromator (Jobin Yvon U-1000), and we used another set of a PMT (Hamamatsu R959) and a monochromator (Jobin Yvon HR-320) for detecting the nonresonant CARS signal. The PMT signals were received by a two-channel boxcar averager (Stanford Research SR-250), and the data were recorded by a computer (IBM 386 compatible) interfaced with the boxcar...
averager. The PSU consisted of a pair of wedges made of BK-7 glass, and we automatically changed its thickness by sliding a wedge with a stepping motor interfaced with the computer.

In this experiment accurate measurement of the pressure is important. Before each measurement we evacuated the whole gas line, including gas cells, at a pressure of less than 100 mTorr and flushed it with the filling gas. The pressure of the reference and the sample gases was measured with a pressure transducer (Druck PDCR-911). We applied the bias voltage of the transducer with a precision power supply (HP 6115A) and read the voltage signal with a 5½-digit digital voltmeter (HP 3478A). We calibrated the transducer (with the power supply and the voltmeter) as a system against a piston gauge (Ruska 2465) for 20 points in pressure ranging up to 2 bars. The estimated uncertainty of the calibration was less than 0.1% of the reading value.

Using argon (Matheson 99.9995%) as an internal calibration standard, we measured the relative magnitude of the nonresonant third-order susceptibility of various gases: acetylene (C$_2$H$_2$, 99.6%), carbon dioxide (CO$_2$, 99.99%), methane (CH$_4$, 99.8%), nitrogen (N$_2$, 99.99%), oxygen (O$_2$, 99.99%), propane (C$_3$H$_8$, 99.5%), carbon monoxide (CO, 99.95%), Freon (CF$_4$, 99.7%), and hydrogen (H$_2$, 99.999%). Most of the sample gases were supplied by Korean Special Gas Company, except argon and Freon (Matheson, Freon-14).

Defining the contrast of the interference fringes as the ratio of the maximum to the minimum of the interference signals, we obtained the highest contrast when filling the reference and the sample cells with the same gas at the same pressure. The contrast strongly depends on the alignment of the entire system, the bandwidth of the laser pulses, the window contamination, etc. The nominal highest contrast during the experiment was above 100. The measurements were performed at the Raman shift, 2157 or 2334 cm$^{-1}$, to avoid the Raman resonance line of nitrogen or carbon monoxide, respectively.

4. RESULTS AND ANALYSIS

Filling both the reference and the sample cells with argon at the pressure of 0.99 bar and 0.51 bar, respectively, we obtained a typical interference fringe by changing the thickness of the PSU; the fringe pattern is shown in Fig. 4. The coherence length18–20 given in the figure is $2\pi/\Delta k_p$. Each data point denoted by a cross (+) is the average of 5 shots that were normalized for the laser intensity fluctuation. The solid line is the result of least-squares curve fitting with relation (11), and we determined the amplitude of the fringes for a given pressure of the sample cell.

To obtain the ratio of the nonresonant susceptibility of the various gases to that of argon, we first filled both the reference and the sample cells with argon and measured the amplitude of the interference fringe by changing the thickness of the PSU at several pressures of argon in the sample cell. The results are shown in Fig. 5. The straight line in Fig. 5 is the result of a linear regression of the data points. We found that the data points are nicely fitted by the straight line with a very small intercept.

After evacuating the sample cell and then filling the cell with the sample gas being tested, we measured the amplitudes of the interference fringes at several pressures of the sample gas. The amplitudes of the fringe for the sample gases were normalized with the amplitudes of the fringe of argon at each corresponding pressure, and the results are plotted in Fig. 6. The straight lines in Fig. 6 are the results of linear regressions to the data points of each sample gas. We note that the intercepts of all the straight lines shown in Fig. 6 are negligibly small. From the fitting procedure, we extracted the ratios of the slope of the interference fringe of the various gases to that of argon, which gives us the value of the effective third-order susceptibilities of the sample gases relative to that of argon.

The ratio of the slopes and the calculated effective susceptibilities of the various gases are listed in Table 1. For the calculation of the effective susceptibility, the value of the nonresonant susceptibility of argon reported by Rosasco and Hurst23 was used. The values in the parentheses are the estimated uncertainties in the determined values. We evaluated the uncertainties by accounting for the uncertainties in determining the slopes of the interference fringes of argon and the sample gas, the intercepts of the linear regressions, and the pressure measurement. The uncertainty of the ratio of the slope for most of the

![Fig. 4. Typical interference fringe obtained by filling both the reference and the sample cells with argon at the pressure listed.](image)

![Fig. 5. Amplitude of the interference fringe measured by changing the thickness of the PSU at several pressures of argon in the sample cell.](image)
gases in Table 1 is usually about 2–3% and is no larger than 5%.

To determine the pure electronic nonresonant susceptibility of the gases, we have to subtract the off-resonant Raman susceptibility from the effective nonresonant susceptibility. The CARS susceptibility is generally given by the following expression:\(^{(14)}\):

\[
\chi_{CARS}^{(3)} = \frac{N}{h} \sum_{a,b} (\rho_{aa} - \rho_{bb}) \frac{e^4}{\omega_1 \omega_2^2} \frac{d\sigma}{d\Omega} \frac{1}{\omega_{ba} - \omega_1 + \omega_2 + i\gamma_{ba}},
\]

where \(N\) is the total number of molecules per unit volume, \(\rho_{aa}\) and \(\rho_{bb}\) are the population in the ground state and the upper state of the Raman transition line, respectively, \(d\sigma/d\Omega\) is the Raman cross section, \(\omega_{ba}\) is the Raman transition frequency, and \(\gamma_{ba}\) is the linewidth of the Raman transition due to the relaxation processes. In the off-resonant region, \(|\omega_{ba} - \omega_1 + \omega_2| < \gamma_{ba}\). Then we get

\[
(\chi_{CARS})_{\text{off}} = \frac{N}{h} \sum_{a,b} (\rho_{aa} - \rho_{bb}) \frac{e^4}{\omega_1 \omega_2^2} \frac{d\sigma}{d\Omega} \frac{1}{\omega_{ba} - \omega},
\]

for the off-resonant Raman susceptibility, where \(\omega\) is the Raman shift (= \(\omega_1 - \omega_2\)). The off-resonant Raman susceptibility in relation (15) comes mainly from the vibrational–rotational \(Q\) branch of each molecule. The magnitudes of the Raman cross section\(^{34,35}\) are listed in Table 2, and the references of the molecular constants used for determining the Raman transition line of the molecule are listed in the same table. Using relation (15) and the Raman cross section listed in Table 2, we calculated the off-resonant term; the calculated off-resonant

Table 1. Determined Effective Susceptibility \(\chi_{NR}^{(3)}\)

<table>
<thead>
<tr>
<th>Gas</th>
<th>Ratio(^a)</th>
<th>Effective (\chi_{NR}^{(3)}) [(10^{-18}) cm(^3)/erg amagat]</th>
<th>Raman Shift (cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylene</td>
<td>4.11 (0.08)</td>
<td>38.9 (0.76)</td>
<td>2157</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>1.14 (0.05)</td>
<td>10.8 (0.5)</td>
<td>2157</td>
</tr>
<tr>
<td>Methane</td>
<td>2.84 (0.15)</td>
<td>26.9 (1.4)</td>
<td>2157</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1.08 (0.02)</td>
<td>10.2 (0.2)</td>
<td>2157</td>
</tr>
<tr>
<td>Oxygen</td>
<td>0.773 (0.019)</td>
<td>7.31 (0.18)</td>
<td>2157</td>
</tr>
<tr>
<td>Propane</td>
<td>10.7 (0.39)</td>
<td>101.2 (3.7)</td>
<td>2157</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>1.09 (0.03)</td>
<td>10.3 (0.3)</td>
<td>2334</td>
</tr>
<tr>
<td>Freon</td>
<td>0.730 (0.026)</td>
<td>6.91 (0.25)</td>
<td>2334</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>0.704 (0.018)</td>
<td>6.66 (0.17)</td>
<td>2334</td>
</tr>
</tbody>
</table>

\(^a\)Ratio of the slope of the interference fringe of the sample gas to that of argon (estimated uncertainties are shown in parentheses).

\(^b\)The effective susceptibility \(\chi_{NR}^{(3)}\) is calculated based on the value of the nonresonant susceptibility of argon (9.46 \(\times\) \(10^{-18}\) cm\(^3\)/erg amagat) reported by Rosasco and Hurst.\(^{23}\)

Table 2. Raman Cross Section and the Calculated Off-resonant Term

<table>
<thead>
<tr>
<th>Gas</th>
<th>Raman Band (cm(^{-1}))</th>
<th>Raman Cross Section(^a) [(10^{-31}) cm(^2)/sr]</th>
<th>References for Molecular Constants</th>
<th>Off-resonant Term [(10^{-18}) cm(^3)/erg amagat] at 2157 cm(^{-1})</th>
<th>at 2334 cm(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylene</td>
<td>1973</td>
<td>23.76</td>
<td>37</td>
<td>-12.00</td>
<td>-</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>1285</td>
<td>3.37</td>
<td>38</td>
<td>-0.35</td>
<td>-</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>1388</td>
<td>5.23</td>
<td>38</td>
<td>-0.62</td>
<td>-</td>
</tr>
<tr>
<td>Methane</td>
<td>2917</td>
<td>39.31</td>
<td>39</td>
<td>4.17</td>
<td>-</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>2331</td>
<td>4.32</td>
<td>37</td>
<td>2.30</td>
<td>-</td>
</tr>
<tr>
<td>Oxygen</td>
<td>1555</td>
<td>4.41</td>
<td>40</td>
<td>-0.67</td>
<td>-</td>
</tr>
<tr>
<td>Propane</td>
<td>2890</td>
<td>100.0</td>
<td>41</td>
<td>12.5</td>
<td>-</td>
</tr>
<tr>
<td>Carbon monoxide</td>
<td>2143</td>
<td>4.15</td>
<td>37</td>
<td>-2.03</td>
<td>-</td>
</tr>
<tr>
<td>Freon</td>
<td>1283</td>
<td>3.01</td>
<td>40</td>
<td>-0.24</td>
<td>-</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>4156</td>
<td>14.9</td>
<td>37</td>
<td>0.77</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^a\)Refs. \(34\) and \(35\).
terms of the sample gases used in this investigation are given in Table 2 also.

The electronic susceptibility $\chi^{(3)}$ of the various gases determined in this investigation are summarized in Table 3 and compared with several previous determinations. The results of Rado21 are the reevaluated data that were calculated reflecting the more accurate value of the susceptibility for the hydrogen Q(1) line reported by Rosasco and Hurst.23 Most values of the electronic susceptibilities reported here are in reasonable agreement with the literature data listed in Table 3. To confirm the measurement technique, we measured the effective susceptibility of oxygen again at a different Raman shift of 2334 cm$^{-1}$, which differs by only 2.1% from the value listed in Table 3 measured at 2157 cm$^{-1}$.

5. CONCLUSIONS

We have demonstrated the application of the nonlinear interferometric technique to the measurement of the nonresonant third-order susceptibilities of various gases. With this technique we reduce measurement errors by direct comparison of the nonresonant signal of a reference with that of a sample gas and by linear regression of the data obtained at several pressures. This technique is especially useful for measuring the nonresonant third-order susceptibility of gaseous samples whose nonlinear optical signals are weak. We estimate that overall uncertainty associated with this technique is less than 5%.

ACKNOWLEDGMENTS

We thank J. P. Looney at the National Institute of Standards and Technology for helpful discussions. This research was supported by the Korean Ministry of Science and Technology.

REFERENCES

13. R. J. Hall and A. C. Eckbreth, “Coherent anti-Stokes Raman spectroscopy (CARS): Application to combustion di-